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1 EDITOR’S PREFACE

Shortly before he died in 1980, Dr C S E (Bob) Phillips was investigating an approach to
the design of computer programs targeted at the so-called “software crisis”. In a sense,
this was the bringing together of two of many themes in his versatile research career. The
first involved a graphical scheme for representing real-time systems, both hardware and
software, in which different processes shared data [1]. Diagrams that obeyed the rules of the
scheme soon became known as Phillips diagrams and these had a profound influence on the
MASCOT design philosophy that evolved later [2]. Quite separately, Phillips pioneered
techniques for analysing the logical structures of sequential programs [3]. These aided
comprehension; were seen as a first step towards software verification; and sowed the seeds
for what eventually became the Malvern Program Analysis Suite (MALPAS).

Very soon, Bob Phillips realised that producing programs capable of being proved
correct was a tricky matter. The problem lay, he claimed, with the very nature of sequential
programs, with the use of selective modules, loops and worst of all shared storage. With
decreasing hardware costs, alternative architectures had to be the answer. His paper,
which appears to be a first draft, was given to me by the author in 1980. I must therefore
apologise for having been so late in bringing it to the attention of a wider audience.

The style is informal but the approach is directly relevant to modern developments
in formal specification, design and verification. Sadly, one page of the original typescript
was missing along with the entire bibliography cited by the text. I have therefore added
some obvious references. I have also made several changes of an editorial nature together
with some footnotes that reflect my interpretation of the text. It has been my intention,
however, to retain the original flavour of the paper wherever possible.

2 INTRODUCTION

The cost of computer hardware has fallen dramatically over the past 30 years, causing an
expansion in the demand for programmers and for programs of ever increasing complexity.
On the other hand, the costs of programming have fallen comparatively little over this
period. Unfortunately, the problems of writing, debugging, testing, understanding, modi-
fying, analysing, and proving programs increase more than proportionately with size; and
these problems are exacerbated when teams of programmers are needed. This situation is
sometimes described as the “software crisis”.

It is generally recognised that the methods of program production, adequate for simple
programs written in a few days by a single programmer for his own purposes, are unsuitable
for larger scale organised production. By analogy with engineering and other established
disciplines, various managerial and design techniques have been advocated. These are
based on the modularisation, structuring and documentation of programs. Although the
motives are correct, the view taken in this paper is that the proposed techniques are
palliatives. The origin of the problem is much more fundamental, namely with computer
programming itself. What is required is a new kind of programming that follows the style
of thinking found in other, established disciplines.

The fault lies not so much with conventional programming but with the sequential
mode of thinking on which it depends. The idea that a system should be constructed on
the basis that its overall behaviour is to depend on the order in which its various parts




operate is used in few other disciplines !. The sequential algorithm, being inherently
more complicated than an order independent “algorithm”, is usually reserved as a way of
explaining how something works or is to be used and not, if at all possible, as a recipe for
its construction. Of course, it is easy to understand why sequential thinking dominates
in computing since it mirrors the way conventional computers actually work. Indeed, the
word “algorithm” usually implies sequentiality.

The starting point for this paper is therefore the observation that conventional pro-
gramming is an unnecessary, over-complicated and impractical technique for constructing
data processing systems of any kind save for the most trivial. Of course, the meaning
of “trivial” depends on the level of language employed: for example, a program that is
simple and easy to understand when expressed in Algol 68 might be non-trivial if written
in machine code and even less trivial if written in microcode. Roughly, if a program can
be written and developed by a single programmer in a few days and can easily be under-
stood by another programmer, then the program is trivial; otherwise the program is too
complicated and should not have been written.

New Programming is based on a non-sequential mode of thinking similar to that used
in other disciplines. This in turn presupposes a non-sequential computer in which the flow
of data is the only factor of importance; so that, to obtain a correct result, the elemental
processors out of which it is constructed are not required to carry out their processes in an
ordered sequence. Fortunately the “New Computer” need not be built of hardware, but
can be constructed from software. The software consists of a set of conventional programs,
designed to be as simple as one wishes, that intercommunicate via data “stores”. For
normal off-line work an entirely distinct, sequencing or controlling program is used to
“run” the individual programs in a serial order unrelated to the state of the data in the
system. Further, we may continue to use existing computers, languages and operating
systems, changing nothing but our concepts.

For reasons of brevity, conventional, sequential programs will henceforth be referred to
as old programs in this paper 2.

New Programming turns out to be extremely easy compared with old programming,
at Jeast as far as its mechanics are concerned, though to understand it requires a com-
plete change of outlook. Almost every concept in old programming is inapplicable. First,
we must understand the workings of a conceptual, non-sequential, “data flow™ machine.
Unlike a conventional computer, this is not a general purpose machine for interpreting pro-
grams: rather it is a special purpose machine defined by the New Program. Each particular
problem is solved by specifying and designing a network of data processors and storesin a
manner analogous to the design of any form of processing system. The mechanical inter-
connection rules are extremely simple. The difficulties of New Programming are mainly
the difficulties of design, in other words of specifying the network. Thus, knowledge based
on previous experience is essential.

By contrast, old programming is an inventive, meccano-like technique for constructing
by evolution a network of fized abstract parts. However, the interconnection rules in old
programming are far more complicated than in New Programming. They involve processor
sequence as well as data flow together with the concepts of variable processors and stores.
The resulting network is virtually impossible to comprehend and its correctness may be

leg although the different stages of a radioc set process dsta in sequence, each stage runs in parallel.
Ih fact the th tained “cor 43 1* thr —-L s




impossible to prove in practice. Thus, unlike a New Program, an old program can be
developed only by trial and error methods. Nevertheless, old programming, at least in its
purest form, has the advantage of being a learning process. Thus, knowledge based on
previous experience is unnecessary. Viewed in this light, it can be seen that the “software
crisis” is a myth. Instead, there exists a “programmer crisis” in the sense that “pure”
programmers must choose between:

1. “trivialising” their functions and

2. gaining the specialised knowledge needed to design data processing systems by be-
coming systems designers who write their designs as New Programs.

With hindsight, it is clear that New Programming is not really new, but a formalisa-
tion of previous ed hoc software design techniques, Its origins lie in a practical method
developed some years ago for the production of software for an on-line, real-time, computer
controlled radar [1]. This resulted in a network of small, apparently autonomous, concur-
rent programs that communicated with each other via data “areas” (stores and buffers of
stores). Subseqvintly, this simple and apparently self evident technique was applied more
widely; but it soon became clear that the very concept of data flow, that systems designers
and non-programmers, had no difficulty in understanding was found by programmers to be
hard to relate to programming. Indeed the author and others made efforts to extend the
network symbols so as to include the far more complicated concepts of ordinary program-
ming. Such diagrammatic extensions to “program networks”, as they became called, were
never wholly satisfactory for reasons that are now obvious, for if successful they would
have constituted a method for proving correctness. (A practical way of proving the cor-
rectness of an old program is to transform it into an equivalent data flow network form.)
An important complicating factor, now seen to be essentially irrelevant, was a confusion
between on-line and off-line systems and between parallelism and non-sequentiality. This
was caused by the practical need to implement a data flow network on a single computer.

Thus, there was conceptual confusion on the one hand and the difficulty of enforcing an
unfamiliar design method on the other. A considerable advance occurred with the advent
of MASCOT [2, 4] and its associated method of constructing systems based on enforceable
data flow networks. MASCOT has now been applied successfully to several systems so
that New Programming under another name is now well-established, at least for on-line
systems.

Data flow design techniques have also been established for off-line applications. Quite
recently 3, several papers have appeared that reveal essentially the same data flow phi-
losophy for non-numeric applications, for general purpose computing and for the design
of computer networks. Doubtless, similar ideas have occurred to a number of practising
programmers. However, the design techniques described in these papers all refer to special
implementations which, though of practical value, limits their immediate applicability and
obscures the underlying theoretical concepts. Evidence that special operating systems are
unnecessary (though convenient) is provided by the many programmers who have invented
in effect a serial form of the data flow network by designing programs as series of “passes”.
The “top” level of a “structured” program is also in effect a serial data fiow system, but

*ie 1980




the subsequent expansion of selective modules is based on conventional sequential pro-
gramming ideas. Constantine’s data flow graphs, described as “bubble” charts by Brown,
reflect a data flow philosophy even though the important data “areas” are not included.
Consequently, the significance of the charts does not appear to have been properly under-
stood.

3 A GENERAL MODEL OF PROCESSING SYSTEMS

A data processing system, consisting of hardware, software or a set of people in a bu-
reaucracy, may be regarded as a discrete product processing system whose products are
informational. Such a system inputs a number of different objects of one kind and outputs
a number of different objects of another kind. Among many examples, we can think of
a country importing and exporting goods, a factory producing a range of articles from
various parts, transport systems and financial systems. The functional transformation be-
tween inputs and outputs is called a process and is performed by a processor. Of course,
some processors merely transfer products from one place to another (eg transport systems,
shipping).
A processing system has only two parts:

1. processors (eg the country, factory or transporting device) and

2. product buffer stores (eg warehouses) where the products are kept when not being
processed.

Like any system, a processing system can be viewed either as subdivided into sub-systems
or as their aggregation. For example, a country with its customs warehouses may be re-
garded as the sum of its separate factories and warehouses. Similarly, the world processing
system may be viewed as a “closed” system, with no imports and exports, consisting of
all internal countries, customs warehouses and shipping.

We may therefore model the structure of a product processing system as a network of
processors and product buffer stores. We can express such a structure either as a set of
functional equations or, more conveniently, as a diagram in which processors and product
stores have different symbols and where directed arcs represent the directional flows of
products from stores to processors and processors to stores.

A product store is simultaneously a source for some processors and a sink for others.
If the system flow is continuous and if the processors are autonomous, so that the rates of
flow are uncontrolled, the number of items of the same type in a buffer will vary. Thus,
the buffers will be empty on some occasions and full at others. Further, a product buffer
store can contain more products than are immediately required as inputs to processors.

Let us imagine that a buffer store is subdivided into separate stores each containing
an individual product. Thus, a buffer store is simply a set of stores containing similar
products. Each buffer, and therefore each of its stores, can be identified by the name ¢ of
the product it contains. Consider, for example, a buffer store named “car parts” divided
into a set of stores also called “car parts”. (We may suppose that “car parts” is used by
a processor named “car factory™.) The “car part” buffer store would consist of a set of
similar car parts stored at different times.

*In this context, the reader may prefer the term TYPE.
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A buffer thus contains a history of equivalent products that could be used by processors
in any order. It follows that we can distinguish

1. the structural design of a processing network comprising named processors and stores,
and

2. the problems of flow control that necessitate buffering.

Since we are interested primarily in structural design we shall ignore buffering for the
present and refer simply to stores which contain products.

When a processing system is modelled by a network it is usually clear which are the
processors and which products are input and output, but the naming of product stores
is somewhat arbitrary. Naming implies the wish to think of something as a whole even
though it may be divisible. On the other hand, a named product store could contain a
product part of which was provided by one processor and part by another. In network
terms, both the in-degrees and out-degrees of store nodes (the numbers of incoming and
outgoing arcs) would be unrestricted. In such a system the names of stores would be
composite, in the sense of referring to arbitrary groups of sub-products produced and
used by processors, and these would have more to do with naming and designing stores
than with the processing system. If group names were associated with stores rather than
with products, we could imagine stores becoming re-used at different times for different
products. Such matters would be important when designing a system to minimise overall
storage requirements but they greatly complicate the processing system.

To avoid these complications, we shall distinguish sharply between the design of a sys-
tem and its implementation, there being no distinction in the former between the name of
a store and the name of the product it contains. The minimisation of storage requirements
shall be regarded as a separate question (like flow control) to be dealt with at a later stage.
1t follows that we must identify the names of stores either with the names of the products
of processors or with the items used by processors or both. For example, we could split
“car parts” into “car engines” and “non-engine car parts” on the grounds that a factory
making car engines exists or that a factory exists which uses engines only or for both
reasons. In other words, we could associate stores with producers, consumers or both.

We choose not to associate stores with consumers, since this would lead to highly
complex functional equations. Instead, we shall demand that each product emanates from
one processor oaly, 50 that the in-degree of each store node will be unity. On the other
hand, the out-degree is left optional on the grounds that “use” can mean “input”; thus,
stores are always “emptied” by processors whether or not all the parts of a product are
needed. It follows that in expanding or contracting the design of a processing system, we
expand or contract stores in terms of their internal sub-components without concerning
ourselves with these sub-components at any fixed level of design. Of course, the processors
themselves “understand” the structure of the product store but from the viewpoint of the
network both processors and stores are “black boxes”.

In certain processing systems the products are not discrete. Examples include fluids in
chemical processing plants and signals in communications systems. However, by quantising
the fluids or signal amplitudes in time, the systems that process them can also be regarded
as discrete processing systems. For communications systems the product is no longer
physical but informational and the concept of an empty store is meaningless (eg signals in
the aerial of a radio or television set). In such cases certain characteristics of the product
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are processed rather than the product itself. For example, in communications we may
be interested in the numerical values of the signal modulation expressed as a function of
time over the quantum interval. Such “data” replaces the original data even though many
receivers can input the original data simultaneously.

Thus our data processing model must be based upon individual stores associated with
sets of values that are read by processors non-destructively and written by processors
destructively. A data buffer on the other hand is read destructively and written non-
destructively since in this case we are removing or adding stored products. This viewpoint
is entirely applicable to computers for all internal storage (core, disc, magnetic tape). On
the other hand, unlike conventional usage where composite names are used, the terms
store and buffer here refer to names of data occupying distinct storage locations (though
the precise locations need not be specified).

In a computer-based data processing system we are often concerned with a single set
of inputs and outputs, the flow being discontinuous. We shall regard such an “off-line”
system as a special case of a data processing system for which buffers are unnecessary and
therefore non-existent. The design of such a system is exactly the same as for a continuous
flow system, but the implementation will be different in that flow control problems do not
exist. Also there will be greater opportunities for subsequent minimisation of total storage.

4 NETWORKS OF STORES AND PROCESSORS

A New Program describes a data processing system comprising a fixed set of data stores
containing values (corresponding to mathematical variables) and a fixed set of processors
that perform invariant data transformations expressed by mathematical functions. Each
processor also defines a fixed subset of stores from which it inputs values and another fixed
subset of stores to which it outputs values. Different processors may perform the same
function. Stores are finite but conceptually unbounded in size, but stores are not buffers.
Since most of the input stores of each processor are the output stores of other processors,
such a system can be described either by s set of functional equations or by a network *
of two types of node connected by directed arcs. Figure 1 shows a simple example of an
acyelic network (ie without loops) composed of four processors and nine stores. The stores
are drawn as rectangles with their names juserted where we imagine the values to reside.
The processors, regarded as “black boxes”, are drawn as circles with the functions named
inside. The connections between stores and processors are drawn as directed arcs through
which we imagine values to flow. Copies of values flow from stores and new values flow
into stores.

In such a data processing network some of the stores are external. Stores with no
incoming arcs are described as the ezternal inputs to the system (eg S; and §;) while
those with no outgoing arcs are the ezternal outputs (eg S7 and Ss). All other stores are
internal to the system. The in-degree (number of incoming arcs) of an internal store is
normally unity. When values are placed in a store by a processor, the new value replaces
the old value and the variable is said to be defined. When a processor inputs a value from
a store, the value in the store remains unchanged and the variable is said to be referenced.

In physical terms each processor must initially be triggered (switched on) by some

*je directed graph
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Figure 1: A Data Processing Network containing stores O and processors O.

means ezternal to the system; processors cannot trigger each other. Each processor then
carries out its process: it inputs values, performs its function, outputs values and termi-
nates. A process thus occupies a finite time, called its period, which may depend on the
values of input data .

Suppose that new values are placed in the external input stores (eg $1 and $3) by means
outside the system and that the processors (eg f;) that input these stores are triggered.
Then these input processors will eventually change the values of their output stores in a
time depending on their periods. By triggering each processor in turn as its inputs become
redefined (eg following the sequence fi, f, fi, f3), & flow of redefined values passes through
the system finally redefining the external outputs. The time taken to do this is called the
period of the system. A system in which the external input variables are defined on one
occasion only is termed a discontinuous data flow system or off-line system. When a serial
set of processes are synchronised to the flow of redefinitions the system is said to employ
synchronous serial processing.

An offline system can be implemented on a single, conventional computer. The in-
dividual processors are replaced by old programs that are “run” in sequence under the
control of an entirely separate, conventional operating system. It is an important prin-
ciple of New Programming that this sequence shall not normally depend on the state of
the system (ie the current values of the variables). Data flow loops, however, present an
exceptional case.

If the same sequence of processes were continuously repeated, the same flow of redef-
initions would take place repeatedly and the state of the system would never change. If,
however, all the processes were repeated continuously but in any other sequence, various
invalid redefinitions would initially flow throughout the system; but eventually, though
more slowly than before, valid redefinitions would pass through the system and the correct
final state would be achieved. The time taken to do this is again called the period of the
system. Such a system is said to employ asynchronous serial processing and could be used
for on-line systems where only a single computer is available and data flow rates are being
optimised.

We turn now to asynchronous parallel processing. After being switched on, each pro-
cessor repeats its process autonomously and unendingly in parallel with other processors.
Examples may be found in networks of computers, in hardware digital processing, in “data
flow computers” and in organisations of people. With asynchronous parallel processing as

*In & real-time system where processes are repeatedly performed, termination means the completion of
a eycle.
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with asynchronous serial processing the phenomenon of transient, invalid definitions will
again be found but its duration will usually be shorter. The time taken to complete the
first flow of valid definitions, the period of the system, will also be shorter at least for
networks with parallel data flows. However, for serial data flow problems, where valid
processing cannot be performed in parallel, asynchronous parallel processing would be
somewhat longer than synchronous serial processing.

A more complicated method that synchronises processes to the flow of definitions in-
volves transmitting flags, semaphores or tokens with the data, as with Petri nets. The
period of such a synchronous parallel processing system is minimal, ignoring overheads re-
quired to set and test flags, since each processor can “idle” with a very short period while
attending a redefinition. This method is used in computers with so-called “autonomous
data transiers” (where the processor is hardware) and “interrupt programs”. Flag synchro-
nisation can also be used with serial processing to ensure that a process is not performed
unless all its input data flags are set, but it is only strictly necessary for the handling
of data flow loops in discontinuous data flow systems. However, it is also discussed in
the literature on continuous data flow systems where the individual processors are rather
misleadingly described as “co-operating” 7.

There is an important difference in principle between asynchronous and synchronous
processing. In the former, the arrival of valid definitions in the external output stores
must be estimated since these are preceded by invalid definitions. In the latter, the arrival
is known by the fact that any changes in the values of external outputs must be valid
changes. In practice, this difference is less important than is generally supposed, since few
output devices have the ability to record or follow rapid fluctuations.

In an on-line system, external processors (human or equipment) provide a continuous
stream of redefinitions of the input variables causing a stream of new valid values to pass
through the system such that the values of the external output variables will vary with
time. Such a system is described as a continuous data flow system. If the frequencies of
redefinitions of the various external input variables, the input data rates of the system, are
sufficiently low the values of the external output variables will be valid; but if these rates
are increased progressively there comes a point when the periods of the various processes
are too long for the production of valid outputs. At this point the system breaks down,
there being so-called “real-time” problems. However, a continuous data flow system would

recover as soon as the input rates were reduced, though some of the previous data would
have been lost. Replacing the stores by buffers can ease the problem, but improvement is
limited.

To summarise, there are three aspects to New Programming that can be treated inde-
pendently. The first is the design of a network for correctness by writing a New Program
to ensure a correct solution to a given problem. The second is the choice between various
synchronised or unsynchronised forms of serial or paralle] processing. The third is the
means of implementation on actual physical facilities, including issues of economy by shar-
ing physical storage space. Where real-time systems are concerned, there is the further
important matter of flow control which again can be treated quite separately.

"There may be some confusion here between co-opersting with each other and co-operating with the
dats.




5 THE LANGUAGE OF NEW PROGRAMMING

Each individual processor may be regarded as performing a data transformation between
its input and output stores expressed by a functional equation of the form

(y1:¥2, 93, - ¥n) = f(21, 22,235 000.Z1m). (1)

The dependent variables y;,ya,....yn correspond to the output stores; the independent
variables z,,z3,....z;, correspond to the input stores; and the function f is performed by
the processor. Replacing the independent variables by constants, or fixed values, corre-
sponds to defining their values. It is for this reason that variables in New Programming are
mathematical variables rather than program variables ® and functions are mathematical
functions rather than procedures or sub-routines.

A New Program consists of a set of equations of the form (1). For example, the program
corresponding to the data processing network of figure 1 is given by:

(53,54, 55) = h(51,52)

(S, S7) = f3(83, 54, Ss) (2)
55 = f3(56159)
So = fu(S4)

In this program, variables 53 and Sj are never referred to separately; so we can simplify
things by combining these into a new variable Sy, to obtain ®:

(510, 54) = fi(51,52)
(S6, S7) f31(S54, S10)
Sg f3(Se, Ss)
So Ja(S4).

It turns out to be more convenient and more useful to re-express such equations in terms
of single dependent variables. This corresponds to a preference for constructing networks
whose processor nodes have out-degrees of unity. If we regard multiple output processors
as multi-purpose, this implies a preference for designs based on single purpose processors.
The equations then become:

(3)

S1o = fs(51,852)

Sy = fo(51,53)

Se = f1(S¢, S10) 4)
S7 = fa(S4, S10)

Ss = f3(Se, S9)

So = fu(S);

so that the original functions f; and f; have been subdivided. Since every New Program
is the description of a data processing network, equations (2), (3) and (4), though rep-
resenting equivalent programs (they all produce the same result), correspond to different
networks. The network corresponding to New Program (4) is given in figure 2.

Only one rule must be followed in writing 8 New Program:

%i¢ z is not » location in memory.
*We might have regarded S, and S; in the same light save for the fact that the specification of the
system will have involved S;, S3, S» and S,
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Figure 2: Network performing a New Program equivalent to the program performed by
the network of figure 1.

e A dependent variable cannot depend on more than one function (unless there are
redundant equations).

Clearly a variable cannot have different values simultaneously. In network terms, this
corresponds to the rule, mentioned in section 3, that the in-degree of every store must be
unity. The rule also corresponds to the “single assignment” rule first enunciated by Tesler
and Enea in connection with parallelism '°. It follows that special attention must be given
to the introduction of data flow loops.

The language of a New Program has the advantage of containing only one statement
and this is similar to the single FORM statement of MASCOT [6] !* whose purpose is to
assemble a network by creating directed arcs. For the present we shall restrict ourselves
to acyclic networks, thus avoiding implicit equations like y = f(y). Loops can arise
in connection with implementation and minimising storage, an example being given in
section 7.6.

In a New Program we need to know the “meanings” of rectangles and circles but
never their actual compositions. The data structures of variables, though “understood”
and defined functionally, are therefore irrelevant. Similarly, regarding processors as black
boxes, the algorithm used by a process is unknown and irrelevant; it is just assumed correct
and “given”. In old programming, certain basic structures like the arrangements of bits in
simple variables are irrelevant, and certain basic functions such as add, subtract, assign and
so on are unexplained, “given” and assumed correct 2, In New Programming all variables
and functions are basic in the sense of being given, defined to be correct and unexplained.
Of course, all variables have meanings given by their names 12 and all basic functions are
completely understood in terms of their specified effects. Moreover, in New Programming
all variables have equal status irrespective of the quantity of information appertaining. For
example, a variable named “boolean” would contain one bit of information but another
variable named “UK national census” would contain a vast number of bits. Both would be
represented in a network diagram by single rectangles and regarded as equally important.
On the other hand, the concept of veriable variables, of fundamental importance to old
programming, does not exist.

Now even though each function is defined to be correct, so that any processor looked

19See also (5).
in MASCOT 8, however, FORM hes been superseded by the SUBSYSTEM concept.
2 Qccusionally, this sssumption is fawed.
3¢ TYPES
10
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at separately will produce a correct answer, a process can be incorrect or unsafe if extra
unknown inputs or outputs exist 14; for these may become connected with other incorrect
or unsafe processes when a network is formed. It follows that we cannot prove a network
correct without first establishing the non-existence of additional input and output paths
to and from each process. This is an issue whose importance is often unrecognised and
arises when planning the implementation of networks by old programming techniques.
Although the avoidance of these unwanted paths is really quite easy once their danger is
realised, some authors suggest it would be better to invent a new language to include a
new structured statement: examples include FORM in MASCOT, already mentioned, and
PROCESS in MODULA.

In asynchronous processing where invalid definitions temporarily exist, a process that is
otherwise correct may nevertheless be unsafe if it does not terminate ® for invalid inputs.
This is also easy to solve once the problem is recognised, bearing in mind the essential
stability of asynchronous systems based on acyclic networks. If all processes terminate
irrespective of the validity of their inputs '®, we have a powerful method of testing systems
by running the individual old programs in the “wrong order”.

6 PROVING NEW PROGRAMS CORRECT

Assuming that the individual processors behave correctly, the correctness of a system as
a whole is easily proved either algebraically or diagrammatically. In New Program (3),
substituting for Sy yields a reduced set of equations:

(510,54 = fi(51,852)
(S6:57) = f2(54: $10) (5)
Sa f3(S6, f4(54)) = fo(Se, Sa)s

where fy is a new function combining f3 and f. In network terms this is equivalent to
creating a new process by drawing a continuous, “circular” curve round the functions to
be eliminated. Any variable not connected with functions outside this region becomes an
internal variable (eg Sp). We are no longc: interested in the contents of this new region,
that is to say the composition of fy. Obviously we can substitute in this way as many
times as we like and in any order, removing the eliminated equations each time until no
further eliminations are possible. The New Program is correct if:

1. only one equation is left;
2. it expresses the required input-output relations of our original system exactly;

3. the inputs and outputs of each processor implemented correspond exactly to the
equation (no more and no less).

In the example, we reach an overall description for the system given by

(57, 5s) = f10( 51, 53), (6)

4 This refers to the ics of in some |
1%je complete its cycle

14Thus each function must be “total”. eg divides must deal safely with a transient divisor that vanishes.

pulg L dnint Al
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where Sz, Sp are the external outputs, §1, 57 are the external inputs a. d fi¢ is the function
of the whole system. In network terms, the progressive elimination of equations is described
as reducing the network. Note that equation (6) also represents our starting point prior
to developing New Programs like (2), (3), (4) and (5). Equation (6) is a reduction of
equation (2) while (2) is an expansion of (6).

It follows that confidence in the correctness of a system developed using the techniques
of New Programming has little to do with its size or complexity but rests on our confidence
in the correctness of the “basic” functions.

When designing a system we should therefore try to expand it into as many, simple,
functional equations as possible. This expansion, which can be performed both by writing
equations and by drawing a network, is the main thrust of New Programming.

7 EXAMPLES

At this point, a page was missing from the original draft typescript which started mid-way
through section 7.2. This must have included the title of a new section on ezamples and
some narrative introducing each ezample. I have added the bare minimum of tezt for the
sake of clarity.

7.1 FIVE PROBLEMS
To illustrate the essence of New Programming consider the following five examples:
1. Design a program to find the product of a pair of integers of known word-length.
2. Design a program to find the complex roots of the quadratic equation
az? +bz4c=0,
whose coefficients are complex numbers with a non-zero. Ignore issues of overfiow.

3. Given a database containing the results of a national census, design a program to
find the average age of people whose surnames begin with a particular letter of the
alphabet.

4. Design

¢ a compiler for the programming language CORAL 66;
e a translator from CORAL 66 to a form suitable for control flow analysis.

5. Design a chess playing program.

7.2 TOP LEVEL DESCRIPTIONS

The top level descriptions of each problem, analogous to equation (6), are now presented.
They are devoid of semantic detail, only the information flow relations being specified, but
they form the starting points for their subsequent decompositions into New Programs. Of
course, this is the reverse of the reduction process described in section 6.
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1. Product of integers:

Product of two integers of given word length =
J(Integerl, Integer2, Number of bits).

2. Quadratic equations:

Roots of quadratic equation = f(a, b, c).}”

3. Average age:

Average age of people whose surnames begin with a particular character =
f(National census, Character).

4. CORAL tools:

(Relocatable binary code, Error messages, Nodal format for program analysis) =
f(A CORAL 66 segment, Parameters for size).

5. Chess pluyer:

Black or white’s next move = f(Present state of chess board, Black or white).

7.3 DECOMPOSITION

The next step for each example is to decompose the overall data transformation function
into a set of sub-functions. This is achieved intuitively by selecting one or more interme-
diate variables that will help us find the outputs from the inputs. We can think forwards
from the inputs or backwards from the outputs.

The simplest case produces a serial data flow system. Suppose we start with

y = f(z)
and can think of only one intermediate variable p, say. We can then write:
vy = fl(p):
P = fiz)

where f; and f2 are less complez than f. Of course, there is no need for f; and f; to be
of equal complexity, the choice of p being somewhat subjective.

We may now regard each sub-equation in isolation as a separate data transforming
system to be constructed. For example, if p = f;(z) were divided into two equations using
another intermediate variable ¢, we would write:

v = hAp)
p = fie),
¢ = fiz)

171f we were worried about a being small, we might instead start with (Roots, Error messages) = f(a, b, c).
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Similarly, we could continue dividing as many times as we wished until all functions were
judged to be elementary. Of course, the meaning of “elementary” is somewhat arbitrary,
depending on the nature of implementation. We can see this with the first example:
from the programming viewpoint the function is elementary but the function would be
subdivided if we wished to design a hardware multiplier using, say, half adders.

Now there is no need to restrict ourselves to purely serial networks and indeed it is
unlikely that we can do so in practice. Given sufficient design experience and insight into
previous methods, an initial decomposition into a network should be easily achievable.
Most people lacking specialist knowledge will have immediate difficulties with example 5
and, to a lesser extent, with example 4. It follows that, beyond a certain point, decompo-
sition may not be obvious even though further intermediate variables must ezist. A useful
technique in this event is to create multiple output functions by subdividing variables into
parts %, For example, suppose that the variable ¢, introduced above, consisted of two
parts, ¢; and g;. We could write

{q1,92) = falz).

Is p now a function of both ¢; and ¢;7 We may be able to envisage a further variable r
necessary for computing both ¢ and g2 such that:

r = fS(Z)v
qQ = fﬁ(r)s
@ = fir)

When invention finally dries up we are forced to write the individual functions as separate,
old programs. If these turn out to be trivial as measured by the time taken to write them,
then no further subdivision is required: otherwise it should rapidly become obvious how
to subdivide further. The temptation to persist with old programming beyond this point
should be resisted since over-optimism afflicts even experienced programmers!

7.4 QUADRATIC EQUATIONS

To illustrate the technique of designing and implementing New Programs let us decompose
a simple example where the design difficulties described in section 7.3 do not arise. In the
second example it is clear that we have two roots and that a suitable intermediate variable
is p = v/b% - 4ac. Thus we may write (ignoring distinctions between functions °):

roots = f(root),rooty},
roof; = f(av b,P), (7)
root; = f(av bvp)v
14 = f(as b, c)'
Introducing another intermediate variable g, namely the square of p, this becomes:
roots = f(rooty,root;), ie transfer to output
root; = f(a,b,p), ie rooty = (-b+ P)/za
root; = f(a,b,p), ie root; = (-b-p)/2a (8)
P = fla) ie p=.4
q = f(a,b,c). je g =0b%— dac
1 This seems close to the spirit of data refinement.
!%je specifying the information flow relations only
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Figure 3: Data Processing Network for solving quadratic equations.

A further subdivision may be achieved by calculating r = b/2a, s = p/2a and t = 4ac so
that we can write formally (assuming operations on complex numbers to be “basic”):

roots = fy(rooty,rooty), ie transfer to output

root; = fa(r,s), ie root; = (-r + )

root; = f3(r,8), ie rooty = (—r—s)

r = fi(a,b), ie r=>5/2a

s = filap), ie s=p/2a )
P = fela) ie p=.4

q = fa(b,¢), je g=0b% -1t

t = fa(a,c). ie t=dac

Note finally that progressive substitution proves this New Program correct. The corre-
sponding network is presented in figure 3.

7.5 OFF-LINE IMPLEMENTATION

Let us suppose that New Program (9) is intended for an off-line system. Thus, a single
set of parameters a, b, c is input and a single pair of roots is required. We can naturally
assume a synchronous system where the functions are to be performed in series using a
single computer. We can write down a possible sequence by starting with the input and
performing each function as soon as all its inputs are defined. (Note, however, that any
asynchronous sequence would do as long as it were continuous.)

The network illustrated in figure 3 shows that, for a discontinuous, data flow system
employing synchronous, serial processing, any sequence takes the form fs, f, fe, f5, with
J4 performed at any stage, followed by f and f; in arbitrary order, and then f;. A possible
sequence is therefore fa, f7, fs, f5. fo, f3, f2, f1, and a conventional program could be
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Figure 4: Data Processing Network for solving quadratic equations with reduced storage.
Directed arcs joining processors indicate control structure.

written in assignment form as:

SRR TN

4(a,b); (10)
root2 := f3(r,s);

rootl := f2(r, s);

roots := f1(rootl, root2).

7.6 MINIMISING STORAGE

Since store ¢ is immediately free, we may use it as a composite variable to include variables

t, g, p and s. At a later stage we may use a and b to store the two roots. This yields a
program with reduced storage:

c:= f8(a,c);

c:= f1(b,¢);

c:= fé(c);

c:= f5(a,c);

ri= fA(a,b); (11)
a

b

W

= f3(r, C);
= f2(r, c);
roots := fl1(a,b).

Figure 4 indicates the complexity of the network equivalent of program (11). Two types
of directed arcs are now needed. Those joining processors indicate control structure. Note
also that sharing storage has created data flow loops for example from ¢ to fg and back
20 The general problem of optimal storage sharing is discussed by Marill.

If lists of values were to be input then the functions would be implemented with FOR
LOOPS or their equivalent. If the lists were very long the stores could be held on discs,
for example, ans' the programs would be those of an operating system. Given that the

though these do not reslly correspond to equations like y = f(y)
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elemental processes are correct then program (10) is a correct program. Also, if we can
show that program (11) is equivalent to program (10), then it too is correct on the same
assumptions. In practice, one should develop and test New Programs like (10) before
implementing the storage sharing versions like (11).

If we were implementing a parallel processing system, figure 3 and its equivalent New
Program indicate that f, and fs and later on f; and f; may be performed in parallel but
that all the other functions must be performed in series. In general, parallel processing
would be expected to reduce the opportunities for sharing storage though not in this
particular example.

8 OLD PROGRAMS VIEWED AS DATA PROCESSING
NETWORKS

An old program may be regarded as a data processing system of stores and processors
that uses synchronous serial processing. However, the important distinction between the
data flow network and the external controller, previously discussed, is abolished. It is the
essence of old programming that the controlling “sequencer” triggers processors in an order
that is no longer completely pre-arranged but where successor processors are sometimes
selected 3!, To do this, the sequencer “reads” certain (boolean) values of a predetermined
subset of the stores. Consequently, whether processors will be triggered will depend on
the initial values placed in the external input stores. The network thereby becomes a
static description of all possible data stores, data flow paths and processes from which one
particular path and set of processes is chosen for a given set of external input values. A
new distinction thus arises between static and dynamic descriptions of the network that
does not exist in New Programming.

In system terms, an old program is therefore more difficult to analyse and understand
than its new counterpart since both data flow and control sequence must be considered
simultaneously. The modified network diagram of even a trivial old program becomes
incomprehensible in human terms and is useful only as a mode! for automatic analysis. In
fact the complexities of control flow are such that any useful diagram (eg a flow diagram)
concerns this aspect alone and a program text in which the human reader performs the
role of sequencer is the only feasible description. In practice, system complexity and
the importance of control “structure” are greatly increased by introducing variable stores
(computed addresses, indexed arrays) and variable processors (subroutines, procedures).
Complexity is also increased by abolishing the distinction, on which we have insisted,
between design correctness and efficiency. Sharing storage, for example, is achieved by
using program variables rather than mathematical variables and by using procedures and
subroutines so that processors are “called” to perform different but similar processes at
different times. (Procedures with parameters are equivalent to processors with variable
input-output stores, the connections being made at the time of “calling”.)

It follows that the skill of the conventional programmer is concerned essentially with
constructing a particular solution to a problem from a sequence of processors using stores
whose composite names refer to abstract structures of store lucations. Much of his time
is spent in checking the sequence of operations that ensue when a particular set of data

3 og by means of IF..THEN..ELSE.. constructs
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is input to the system, since there is no guarantee of proving the correctness of such a
system. In New Programming, no programming skill is required but a deep knowledge
of the application problem and of general methods of solution is essential. With old
programming, the reverse is true: apart from a knowledge of programming, all that is
required is the invention of a particular sequential algorithm to solve the problem. Since
inventing ad hoc sequential algorithms (of varying quality) is easy for almost any problem,
it follows that the writing of old programs, like any form of unplanned writing, can be
a virtue or a vice,. When used as a trial and error method of learning about possible
solutions and thereby about the subject of the particular application, it is a virtue. But
when it becomes a means of evading serious study of the application and of possible better
methods of solution, it is a vice. It must be admitted that, as a pastime, problem solving is
far more attractive than design! This is a difficulty faced by advocates of previous design
approaches like “structured programming”.

Since the only possible obstacle to New Programming is an inability to subdivide a
complex function or variable, for design is not always easy, we can use old programming
as a highly effective last resort, namely as a learning tool. Of course, old programming
must be pursued no further than necessary to achieve the particular subdivision. It might
be thought from all this that New Programs like old programs evolve through continual
modification but experience so far suggests the contrary.

9 TRANSLATING OLD INTO NEW PROGRAMS

It is possible to translate an old program mechanically into non-sequential form and this
is frequently discussed in the literature for the purposes of parallel programming. A
transformation into data flow form follows a similar course but the objectives are somewhat
different. The full scale transformation is rather complex and involves:

1. the separate naming of composite named variables,
2. the determination of the complete conditions for each assignment, and

3. the expression of each dependent variable in the form

y = fla, by ....p1, P2y -000)s (12)
where a, b, .... are the independent variables and p;, p;, ... are the predicate variables.

Since we are not concerned in New Programming with abstract structures, all operations
on such structures can be grouped together. For example, given an array invert, invert[3]
has meaning in New Programming but invert(i], with { an integer variable, has no meaning
since we cannot permit variable stores.

In New Programming there is no objection to naming a group of stores but the group’s
name is superfluous to the program. On the other hand, to require this group to have
some particular abstract structure, like “array”, is foreign to New Programming. We must
therefore regard the names of old programming objects as basic elements whose structure
is irrelevant. For example, in the case of arrays or simple identifiers that can be addressed
as part-words 22, there is the option either to regard them as basic stores or to analyse

224 CORAL construct
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the program in greater detail so that each array element or bit/byte is basic. The latter
option is almost certainly too detailed in practice unless we wish to design a machine code
or hardware analogue of the program.

An alternative to the automatic transformation of an obese, old program is manual
division. Here we view the program from the “top”, or outer block, starting from its first
operation. This outer block must be converted into a sequence without selective modules
(IF...THEN...ELSE... statements) in which no path loops back to a previous module.

There are two types of loops in old programming, one for which the number of iterations
is predetermined (eg the FOR loop) and the other where it depends on the current state of
data (eg the WHILE...DOloop). The former can be regarded as part of New Programming
while the latter lies within the letter if not the spirit of New Programming. Similarly, we
can permit loops within loops ad infinitum.

The problem, therefore, is to distinguish between iterative and selective modules and
to determine the input and output data of each module. Where a program is written
with the outer block consisting of procedure calls, an easy method of subdivision is to
transform each procedure into a process, regarding each call as a separate process. The
most difficult part of any transformation is the determination of the input and output
data. With Algol-based languages such data must have been declared in the outer block.
Unfortunately, declarations in the outer block may also include data that is private to each
procedure, that is to say whose name is shared (composite names). The parameter list on
the other hand usually includes some (but not necessarily all) of the input-output data.

A selective module must be removed from the controlling sequence by converting it into
a process into which the predicate is “absorbed”. In Algol-based languages, the simplest
solution is to convert the selective module into a procedure (called once). If the parameter
mechanism is adequate the input and output data could be passed solely via parameters,
but it is probably safer to use procedures without parameters. (This is essential if the
input-output data is to reside on backing store.)

Any mechanical transformation is crude since it ignores the purpose of the program,
so that the methods just described should be regarded only as a guide. In many cases, a
program is too large because, in the name of efficiency, it is attempting to perform many
different functions and to minimise storage at the same time. Conventional program-
mers find that transforming their programs, by decomposing them into data transforming
functions, is an acceptable technique since it clarifies what they admit is something of a
muddle. However, a design concept that provides a new store for each definition instead of
“updating” an old store is regarded as tedious and is therefore avoided particularly when
composite store names are to be re-introduced at the implementation stage.

Nevertheless, the principle of separating correctness of design from store sharing is
important for building reliable systems from distinct “processors” that are easily tested,
understood and re-usable by other programmers. Moreover, if composite names are intro-
duced at the design stage, an opportunity for meaningful distinction between the separate
names is lost. In addition, system testing is less satisfactory since the overall result depends
on the sequential order in which the separate procedures are called.

19



A

10 ORGANISATIONAL BENEFITS

From a manager’s viewpoint, and even from a programming manager’s viewpoint, a data
flow network represents an improvement in “modular design” over any possible, structured,
old program; for in the latter the various sub-functions must co-operate in the sense that
the correctness of the overall system is highly dependent on the order in which they are
performed. In data flow design, the separate functions do not co-operate and so the tasks
of writing the trivial, old programs are unrelated. The managc can control software
production easily without any knowledge of programming whatever. For example, he can
follow progress simply by asking how many processors are working correctly and how many
remain unfinished, whether any are delayed and if so who is writing them, in the secure
knowledge that, if the system as a whole does not work, the fault cannot possibly lie with
old programs but must lie with the system designer.

On the other hand, the programmer must merely demonstrate that his individual
program produces valid outputs for valid inputs: his job becomes more clearly defined
than if his program were part of a larger program. Since his job has been simplified, and
even trivialised, a snag might be that he finds it less interesting. In fact certain very small
programs might become standardised and designed solely for efficiency.

It is true that a heavy responsibility lies with the data flow designer when the time
comes to integrate the “processors” and “data areas” into a working system, for he alone
is accountable for any problems. Fortunately, experience in the real-time field shows that
data flow designs are easy to develop, change little during development and offer few
integration problems even when the network functions are split between different firms.
The integration problems that remain are usually not network design faults but concern
rates of data flow through the network.

11 EDITOR’S POSTSCRIPT

I am most grateful to several colleagues for having devoted much time and effort to a critical
reading of this paper. S C Giess, T L Thorp, T A D White and J M Whitfield have all
made suggestions that have added clarity to the text while rectifying a few misconceptions
on my part.

As regards the paper itself it is clear that, although much was novel when first envisaged
in the late seventies, the subject itself has moved on a great deal. (For a modern reference
JMW has suggested [7].) For my own part, the preparation of this script has been an
education. I conclude with some comments that relate the topic of this paper to some
recent developments concerning the correctness of data flow networks without loops.

Consider, for example, the network depicted in figure 2 with the S; representing data
stores that are written destructively and read non-destructively. Let us regard the figure
as a design for a system that may be implemented in four different ways:

(SYNCHRONOUS, ASYNCHRONOUS) x (SERIAL, PARALLEL).

Three of these may be modelled straightforwardly in a form sujtable for static analysis and
verification. Possibilities include MALPAS IL [8] and SPADE FDL [9]. In IL, for example,
the declarative part of the model takes the following form in each case:
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TYPE storel, store2, ..... , storell;
FUNCTION f5(storel, store2): storelol;

PROCSPEC process5(IK x: storel
IN y: store2
OUT z: store10)

DERIVES z AS 2b6(x, y)

POST z = £6('x, 'y);

PROCSPEC network(IN si: storel
1IN 82: store2
OUT 87: store?
OUT 88: store8)

[Need not all be different]
(Similarly for the other f s]

[Similarly for other processes)

[* denotes initial state]

POST input_output_relations(’'si, ’'s2, s7, 88);

Of ccurse the body of network will depend on choice of implementation. For synchronous,

serial processing, a possible body would be:

PROC network; [SYNCHROKOUS SERIAL]

VAR 810: storel0; VAR s4: stored;

VAR 56: storeb; VAR 89: store9;
processb(sl, 82, 810);
process6(s1, s2, s4);
process7(s10, s4, 86);
process8(si0, s4, s87);
process4(s4, 89);
process3(s6, 89, s8)

ENDPROC

and this should be capable of proving correct or otherwise.
For synchronous, parallel processing, the MAP.... ENDMA P construct provides a model

of parallelism and a possible body would be:

PROC network; [SYNCHRONOUS PARALLEL)

VAR 510: storel0; VAR s4: stored;
VAR s6: store§; VAR 59: store9;
KAP
processb(sl, 82, 510);
processé(st, s2, s4)
ENDNAP;
HAP
process7({si0, s4, s6);
process8(s10, s4, s7);
process4(s4, s9)
ENDNAP;
process3(s6, 59, s8)
ENDPROC
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e gos e o s B e,

Again, verification presents no serious problem.
For asynchronous, serial processing we need to introduce a loop and one of many
possible bodies is given by:

PROC network; (ASYNCHRONOUS SERIAL]
VAR 810: storel0; VAR s4: stored;
VAR 86: store§; VAR 89: store9;
VAR counter: integer;
counter :x= 0;
LooP
ASSERT loop.invariant;
EXIT WHEN counter > 10;
process3(s6, s9, 58);
processé(s4, 29);
processb(s1l, 2, s10);
process8(s10, s4, s7);
process7(s10, s4, 86);
process6(sl, 82, s4);
counter := counter + 1
ENDLOOP
EXDPROC

However, in implementations of this nature the loop invariant needs to carry the state of
the system on each cycle of the computation. Consequently, the resources required in time
and space to complecte the verification process can be prohibitive.

Finally, there is no obvious method of modelling asynchronous, parallel processing. No
matter: for we know that a proof of one amounts to a proof of all. In other words it suffices,
at least for a one shot system, to prove the correctness of the design of figure 2 by proving
the correctness of one of the synchronous implementations. As regards asynchronous
implementations, the proof of correctness still holds with the caveat that each process
completes its cycle even for illegal inputs. Of course we must take care to say that the
input-output relations are satisfied eventually, that is after the transient period of invalid
definitions.

With regard to the processing of continuous streams of data by asynchronous, parallel
means, there remains the issue of maximum allowable flow rates. (If a thermometer is
required to measure the temperatures of fluids in several glass jars, the correct results will
never be obtained by allowing it only five seconds in each jar instead of the recommended
sixty. In fact such analogies with analogue systems motivated Bob Phillips throughout
his work.) The maximum flow rate for a given network will depend on the execution time
(period) of each process, the communication times between processors and the topology
of the network. A detailed study of this, however, lies outside the scope of this paper.
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